Uczenie przez wzmocnienie stanowi propozycję do rozwiązywania problemów identyfikacji i weryfikacji klientów instytucji obowiązanych, którzy mogą być powiązani z procederem prania pieniędzy czy finansowaniem terroryzmu. Może to mieć zastosowanie zarówno na poziomie czynności weryfikacyjnych, jak i na poziomie monitoringu klienta danej instytucji. Model uczenia przez wzmocnienie pozwala na uzyskiwanie rezultatów akcji agenta jako nie tylko konsekwencji jego uczenia, lecz także podejmowania własnych decyzji zmierzających do uzyskania jak największej nagrody. Wsparciem tego typu działań jest dostarczanie danych technicznych, a także współpraca z czynnikiem ludzkim w ramach uczenia się ze wzmocnieniem na podstawie informacji zwrotnej od ludzi. Oprócz samej idei włączenia tego typu modelu myślenia maszynowego na poziom analityki instytucji obowiązanej pozostaje także uzyskiwanie za jego pośrednictwem rezultatów w postaci predykcyjnego wykrywania zagrożenia związanego z możliwością legalizowania środków przestępczych i inwestowania ich w działalność terrorystyczną.
Date issued: Electronic Issue Date: Identifier:doi:10.37055/nsz/183867 ; oai:editorialsystem.com:article-183867
Electronic ISSN: Print ISSN: Publisher ID: License: Starting page: Ending page: Volume: Issue: Journal: Keywords:reinforcement learning ; money laundering ; Markov model ; agent ; training set ; feedback