Obiekt

Ta publikacja jest chroniona prawem autorskim. Dostęp do jej cyfrowej wersji jest możliwy po zalogowaniu.
Ta publikacja jest chroniona prawem autorskim. Dostęp do jej cyfrowej wersji jest możliwy po zalogowaniu.

Tytuł: Technological and Mechanical Studies on Additively Manufactured Cellular Structures Made of the Ultrafuse 316L Composite Filament ; Technological and Mechanical Studies on Additively Manufactured Cellular Structures Made of the Ultrafuse 316L Composite Filament

Tytuł odmienny:

Badania technologiczne oraz mechaniczne struktur komórkowych wytworzonych przyrostowo z kompozytu Ultrafuse 316L ; Badania technologiczne oraz mechaniczne struktur komórkowych wytworzonych przyrostowo z kompozytu Ultrafuse 316L

Współtwórca:

Paweł PŁATEK ; Paweł PŁATEK

Abstrakt:

Regular cellular materials produced using additive manufacturing (AM) techniques represent a significant development trend in modern engineering materials. Depending on the applied elementary unit cell of topology, it is possible to define the course of the structure deformation process in order to obtain the highest possible energy absorption effectiveness. This feature makes regular cellular structural materials particularly attractive for a number of industrial branches. This paper presents the results of technological trials and the results of experimental studies on the mechanical properties of regular cellular structures made using 3D printing technology under compression test loading conditions. The material used for their production was the Ultrafuse 316L filament and the fused filament fabrication (FFF) technique. The proposed material is a polymer-metal composite with a manufacturing process similar to metal injection moulding (MIM). The adopted research methodology included a feasibility study aimed at achieving material homogeneity and compression tests of the developed and manufactured regular cellular structures under quasi-static loading conditions. Several structural topologies were analysed. Experimental results indicated that regular cellular structures made from 316L steel exhibit high mechanical strength and extensive plastic deformation capabilities. The utilized in this work manufacturing technology used combines the advantages of 3D printing process with the potential of powder metallurgy. The proposed technique of structure manufacturing process is much cheaper than other based on melting metallic powders.
; Regular cellular materials produced using additive manufacturing (AM) techniques represent a significant development trend in modern engineering materials. Depending on the applied elementary unit cell of topology, it is possible to define the course of the structure deformation process in order to obtain the highest possible energy absorption effectiveness. This feature makes regular cellular structural materials particularly attractive for a number of industrial branches. This paper presents the results of technological trials and the results of experimental studies on the mechanical properties of regular cellular structures made using 3D printing technology under compression test loading conditions. The material used for their production was the Ultrafuse 316L filament and the fused filament fabrication (FFF) technique. The proposed material is a polymer-metal composite with a manufacturing process similar to metal injection moulding (MIM). The adopted research methodology included a feasibility study aimed at achieving material homogeneity and compression tests of the developed and manufactured regular cellular structures under quasi-static loading conditions. Several structural topologies were analysed. Experimental results indicated that regular cellular structures made from 316L steel exhibit high mechanical strength and extensive plastic deformation capabilities. The utilized in this work manufacturing technology used combines the advantages of 3D printing process with the potential of powder metallurgy. The proposed technique of structure manufacturing process is much cheaper than other based on melting metallic powders.

Miejsce wydania:

Warszawa
; Warszawa

Wydawca:

Wojskowa Akademia Techniczna ; Wojskowa Akademia Techniczna

Data utworzenia:

2010 r.0

Data złożenia:

2022-08-02 ; 2022-08-02

Data akceptacji:

2022-10-06 ; 2022-10-06

Data wydania:

2024-09-30 ; 2024-09-30

Rozmiar:

B5 ; B5

Identyfikator:

oai:ribes-88.man.poznan.pl:2711

Sygnatura:

doi:10.5604/01.3001.0054.7507 ; doi:10.5604/01.3001.0054.7507

ISSN elektroniczny:

2720-5266 ; 2720-5266

ISSN drukowany:

2081-5891 ; 2081-5891

Język:

angielski ; angielski

Licencja:

kliknij tutaj, żeby przejść ; kliknij tutaj, żeby przejść

Właściciel praw:

Wojskowa Akademia Techniczna ; Wojskowa Akademia Techniczna

Strona początkowa:

47 ; 47

Strona końcowa:

62 ; 62

Tom:

15 ; 15

Czasopismo:

PROMECH ; PROMECH

Słowa kluczowe:

mechanical engineering, additive techniques, regular cellular structures, 3D printing, 316L steel, BASF Ultrafuse 316L ; mechanical engineering, additive techniques, regular cellular structures, 3D printing, 316L steel, BASF Ultrafuse 316L

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

16 paź 2025

Data dodania obiektu:

16 paź 2025

Liczba wyświetleń treści obiektu:

0

Wszystkie dostępne wersje tego obiektu:

https://ribes-88.man.poznan.pl/publication/3048

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji