We introduce methods that use Grobner bases for secure secret sharing schemes. The description is based on polynomials in the ring R = K[X1, . . . , Xl] where identities of the participants and shares of the secret are or are related to ideals in R. Main theoretical results are related to algorithmical reconstruction of a multivariate polynomial from such shares with respect to given access structure, as a generalisation of classical threshold schemes. We apply constructive Chinese remainder theorem in R of Becker and Weispfenning. Introduced ideas find their detailed exposition in our related works
oai:ribes-88.man.poznan.pl:1556 ; doi:10.37055/sbn/135238 ; oai:editorialsystem.com:article-135238
bazy Grobnera ; twierdzenie chińskie o resztach ; schemat podziału ; sekretu ; struktura dostępu ; wielowymiarowa interpolacja
19 maj 2025
19 maj 2025
0
https://ribes-88.man.poznan.pl/publication/1738
Nazwa wydania | Data |
---|---|
REMARKS ON MULTIVARIATE EXTENSIONS OF POLYNOMIAL BASED SECRET SHARING SCHEMES | 19 maj 2025 |