Systemy Logistyczne Wojsk Zeszyt 57 (2022) ISSN 1508-5430, s. 143-160 DOI: 10.37055/slw/163231

Military Logistics Systems

ISSN 1508-5430, pp. 143-160

DOI: 10.37055/slw/163231

Volume 57 (2022)

Instytut Logistyki Wydział Bezpieczeństwa, Logistyki i Zarządzania Wojskowa Akademia Techniczna w Warszawie

Institute of Logistics Faculty of Security, Logistics and Management Military University of Technology in Warsaw

Statistical procedures for determining of parameters for the evaluation of the condition and safety in logistic of military vehicles

Statystyczne procedury wyznaczania parametrów oceny stanu i bezpieczeństwa w logistyce pojazdów wojskowych

Bogdan Żółtowski

bogdan.zoltowski@witpis.eu; ORCID: 0000-0002-6827-9007 Military Institute of Armoured and Automotive Technology, Poland

Przemysław Simiński

przemyslaw.siminski@witpis.eu; ORCID: 0000-0002-2323-3152 Military Institute of Armoured and Automotive Technology, Poland

Krzysztof Kosiuczenko

krzysztof.kosiuczenko@witpis.eu; ORCID: 0000-0002-3097-5488 Military Institute of Armoured and Automotive Technology, Poland

Abstract. The use of technical condition assessment methods in the process of vehicle operation, which are the basis for automating the process of recognizing their current condition and safety, is synonymous with modernity. The purpose of this study is to present fragments of numerical procedures used for programmed studies of changes in the state, reliability, and safety of technical objects in use. The presented methodology, supported by elements of achievements in application of statistical methods, is the basis for a comprehensive assessment of supervised facilities, which are so important for innovative strategies for the operation of technical facilities. However, this requires optimization of the set of diagnostic parameters, development and optimization of condition control tests and optimization of genesis and prognosis methods. The solution to these tasks depends on many factors related to the degree of complexity of the objects, the quality of the operation process and the course of their aging and wear processes. The analysis and synthesis of the obtained research results should allow for the development of dedicated procedures and inference rules for the tested objects (vehicles) in the field of data acquisition and processing for the observation matrix, which is presented in the form of ready-made algorithms in this work. These are important procedures constituting the basis for more and more often built control and diagnostic systems introduced to facilities already at the stage of construction and production in modern technical facilities. Such systems are the basis for monitoring state changes, security threats, reliability, and supervision in the rational operation of technical facilities.

Keywords: logistic, safety, algorithms, modeling, inference

Abstrakt. Stosowanie w procesie eksploatacji pojazdów metod oceny stanu technicznego, które są podstawa automatyzacji procesu rozpoznawanja ich aktualnego stanu i bezpieczeństwa, jest synonimem nowoczesności. Celem tego opracowania jest przedstawienie fragmentów procedur numerycznych stosowanych do programowanych badań zmian stanu, niezawodności i bezpieczeństwa użytkowanych obiektów technicznych. Przedstawiona metodologia wsparta elementami dokonań z obszaru zastosowań metod statystycznych to podstawy całościowej oceny nadzorowanych obiektów, jakże ważnych dla innowacyjnych strategii eksploatacji obiektów technicznych. Wymaga to jednak optymalizacji zestawu parametrów diagnostycznych, opracowania i optymalizacji testów kontrolnych stanu oraz optymalizacji metod genezy i prognozowania. Rozwiązanie tych zadań zależy od wielu czynników związanych ze stopniem skomplikowania obiektów, jakościa procesu eksploatacji oraz przebiegiem procesów ich starzenia i zużycia. Analiza i synteza uzyskanych wyników badań powinna pozwolić na opracowanie dedykowanych procedur i reguł wnioskowania dla badanych obiektów (pojazdów) w zakresie pozyskiwania i przetwarzania danych do macierzy obserwacji, która jest przedstawiona w postaci gotowych algorytmów w tym pracowaniu. To ważne procedury stanowiące podstawe dla coraz częściej budowanych systemów sterująco – diagnostycznych wprowadzanych do obiektów już na etapie konstruowania i wytwarzania w nowoczesnych obiektach technicznych. Systemy takie są podstawą monitorowania zmian stanu, zagrożenia bezpieczeństwa, niezawodności i nadzoru w racjonalnej eksploatacji obiektów technicznych.

Słowa kluczowe: logistyka, bezpieczeństwo, algorytmy, modelowanie, wnioskowanie

Introduction

In the process of technology development and production, an important issue is to ensure products of appropriate "quality" and efficiency. The properties of the facility, influencing the quality and efficiency, cause more and more technical problems for specialists in various fields of technology, as well as for economists interested in them in terms of the needs of the economy. These problems often constitute the basic issue on the safety, state and rational management of fixed assets in an enterprise, especially in the field of management (Żółtowski, 1997).

Treating the use of vehicles as the main stage of verification of their suitability and meeting of social expectations, more and more often at this stage, intensive tests of their correct operation are carried out in properly formalized operation structures (Będkowski, Dąbrowski, 2000; Cempel, 2000; Śniedziewski, 2021).

The possibilities of achievements in all areas of the theory of operation allow for modern solutions in the field of planning and optimization of the procedures for designing, constructing, manufacturing and operating vehicles, according to the main criterion of their quality and efficiency of use. This facilitates the planning and implementation of a modern method of managing fixed assets (Birger, 1978, p. 32; Cempel, 1998, pp. 224-253; Żółtowski, 1995). The interdisciplinary connection of vehicle operation problems clearly indicates the dominant role of technical diagnostics among them, treated as a tool for examining the condition of vehicles and shaping their quality and ways of using them in IT management system (Bajkowski, Grzesikiewicz, Jusis, 2000; Bruel, 1993; Giergiel, 2000).

In the multi-stage process of vehicle existence (valuation, construction, production, operation), the operation phase is the final verification of the product (product) performance, including the "quality" of all previous stages (Cempel, Natke, 1996; Żółtowski, 1995; Żółtowski, 1997).

Nowadays, the term "operation" is understood as a set of purposeful organizational, technical and economic activities of people with technical devices and the mutual relations between them from the moment of taking over the device for use in accordance with its intended use, until its disposal after liquidation (Augustyn, 2022; Śniedziewski, 2021).

Generally, therefore, the problem of exploitation, which has recently found its place in the logistic system, has a multi-layer (hierarchical) structure, for the analysis of which methods developed by the general theory of systems are necessary. In the vehicle operation system, the use subsystem and the maintenance subsystem inseparably connected with it are always treated as the main one (Bendat, Piersol, 199; Cempel, Natke, 1996; Natke, Cempel, 1997).

Only fit vehicles are in the subsystem of use, and they can be used intensively (as intended) or in waiting, when there is a standstill for demand for use. Each malfunction causes the vehicles to go to the maintenance subsystem, where the serviceability is restored and where the recommended maintenance is performed (Giergiel, Uhl, 2000; Śniedziewski, 2021; Żółtowski, Cempel, 2004).

The current technical condition of the vehicle, represented by the values of the measured symptoms of the condition, is the basis for the operational decision. Correct implementation of such a strategy requires effective methods and means of technical diagnostics and trained technical personnel. It also requires overcoming the mistrust of decision makers as to the effectiveness of this type of exploitation.

The economic effects of this method of exploitation are disproportionately higher than in other strategies, which determines the success and great interest in this solution (Banek, Batko, 1997; Broch, 1980; Winiwarter, Cempel, 1996).

The field of knowledge, safety, technical diagnostics, already formed within the field of exploitation sciences - deals with the assessment of the technical condition by examining the properties of working processes and accompanying vehicle operation.

The essence of technical diagnostics consists in determining the condition of the vehicle (assembly, subassembly, element) indirectly, without dismantling, based on the measurement of generated diagnostic signals (symptoms) and comparing them with nominal values. The value of the diagnostic signal must be related to the known relationship with the diagnosed feature of the object's condition, characterizing its technical condition (Birger, 1978, p. 32; Grifin, 1990; Żółtowski, 1997).

The created dedicated system of statistical research of results includes many different procedures and software implementation for the needs of:

- acquisition of dynamic processes (e.g., vibration),
- processing of measured signals,
- research on the interdependence of recorded signals,
- testing the sensitivity of symptoms,
- cause and effect inference,
- visualization of the results of the analysis.

The main components of this system (specific for the field) are:

- LMS Test Xpress software to carry out measurements,
- results visualization and data transfer programs (import unv, Excel),
- SYMPTOMS PROGRAM for determining estimators of measured signals,
- software for measuring the sensitivity of measures: OPTIMUM (qualitative research) and SVD (quantitative research),
- software for studying dependence (correlation) and regression (bonding models),
- system of building inference models (Excel, MATLAB, BEDIND),
- research IT system integration of statistical methods.

Diagnostic data obtained most often from on-board control and diagnostic systems of vehicles after initial processing constitute indications for the development of cause-and-effect models and are the basis for decisions made (Batko, Gołaś, 1998; Giergiel, Uhl, 2000; Śniedziewski, 2021).

Methods and algorithms based on acute and fuzzy algebra, classic methods of condition assessment, as well as adaptive and neuro-fuzzy algorithms constitute the basis for obtaining information that ultimately describes the technical readiness of vehicles (Banek, Batko, 1997; EASA 2022; Żółtowski, 1995).

This work shows the basic algorithms in the process of acquiring and processing diagnostic information in a multi-symptom approach, enabling multi-damage recognition of the condition of vehicles.

Computational algorithms

In this paper a set of computer algorithms was developed, was called Technical Systems State Analysis (TESSA) and contain computational tools to make a technical state analysis. TESSA is integrated for eight modules and each module is an analysis procedure. In the Fig. 1 is showed the main module of TESSA and administrate the modules (Awrejcewicz, 1996; Banek, Batko, 1997; Żółtowski, 1997a). The modules are the following:

- import *.UNV format,
- to build symptoms matrix,
- SVD procedure,
- OPTIMUM procedure,
- Input/Output relationship function,
- optimization,
- Neuronal Network,
- MAC procedure.

Г	Pre-prosessing	
	To read *.UNV plane text fo exporting the measures to	
	To build the matrix of symth starting from the signal mea	
	Analysing	
	Singular Value Descomposition SVD	Optimum procedure Optimum
	Input/Output relationship functions Input/Output	Interpolation and aproximation Optimization
	Neuronal network procedure Network	Created by: EAFIT University (Col.) UTP University (Pl.)
	- Post-prosessing	
	To confront the analysis re of diferens methods	suts

Fig. 1. Technical Systems State Analysis (TSA) Source: Own elaboration

Import *.UNV format

The import *.UNV format module read, draws and exports to .xls format the universal files obtain of DIFA system. The module can read one, two or even more channel saved in the universal format. The universal format has a defined and rigid syntax. The structure of the universal format must have the proper to correctly read the file (Cempel, 1998; Żóltowski, Cempel, 2004.

When the universal file is read correctly, the data and the quantity of samples is display in the module, besides the values of each channel is shown. In the plot is displayed the number of channels, the position, and the data of the acquisition (see Fig. 2).

Fig. 2. Import *UNV format module Source: Own elaboration

To build symptom matrix

This module read an .xls file which must have a defined and fixed structure. The module can calculate the symptoms present and construct a symptom matrix (Awrejcewicz, 1996). The matrix is showed automatically in the module (see Fig. 3).

There are symptoms calculated from related signals and high order analysis (FFT, FRF, TF, etc.) which must be setting the frequency domain to get the index symptom, this is making through a graphical interface of easy and intuitive operation (see Fig. 4).

OPTIMUM procedure

The OPTIMUM module (Żółtowski 1995; Żółtowski 1997a; Żółtowski 1997b) is shown in the Fig. 5. The module can be calculating the best parameters for diagnostic to different ways:

- correlation coefficient,
- sensibility of symptoms,
- determination of Euclid's distance.

	File to analysis Optimum analysis		Select the channel					Samples	
To look for Ceated by:			Symptom	×	0.4028	6			
Universities UTP - EAFIT				12 procedure				sum(wi)	
0.013029	0.14687	0.10411	0.23538	0.40281	0.28594	031743	0.033302	Optimum graph	
0.032344				1	0.70987		0.082674	Parameters sorted	
0.38483	0.3708	0.60696	0.24094	0.041085	0.0077474	0.12024	0.021042	Parameter 4 -	
0.63403	0.61091	1	0.39696	0.067689	0.0127.64	0.1981	0.034668	Poromotor 4	
0.9666	13422	1.3486	13653	1.07.26	0.97183	1.2056	0.75094		
		0.12101	0.12252	0.096252	0.087 209	0.10819	0.067386		
0.08674	0.12044	0.12101	0.12232	0.030232	0.007 800	0.4004.0	0.00/ 300		
	Parameter 1 0013029 0032344 038483 0.63403	Discourse Parameter 1 Parameter 2 0013029 0.14687 0032344 0.34681 0.37648 003244 0.34681 0.04601 0.03443 0.04610 0.04610	Universities UTP - EAPIT Universities UTP - EAPIT sie xis mport data Ma Parameter 1 Parameter 2 Parameter 3 001025 014607 01401 003244 036461 025646 003243 03706 063403 01091 1	Universities UTP - EAFIT 12 procedure de xis Import dista 12 procedure Matrix of parameter Correlation ci Correlation ci Parameter 1 Parameter 2 Parameter 3 Parameter 4 003029 0.14687 0.10411 0.23583 0032344 0.36463 0.58946 0.58946 0.66966 0.24024 0.34063 0.60696 0.24024	Universitie UTP - EAFIT Inport data Matrix of parameters Matrix of parameters Matrix of parameters Parameter 1 Parameter 1 Parameter 1 Parameter 3 Parameter 1 Parameter 4 Parameter 5 003029 01460 025846 05843 1 03943 034041 034043 040281 033443 03706 06969 02404 004056 058434 1 039696 0057689 0058451 <td>Veneword, or provided and provided</td> <td>Universitie UTP - EAFIT gle xis Import data Matrix of parameters Matrix of parameters Parameter 1 Parameter 2 Parameter 3 Parameter 5 Parameter 6 Parameter 7 0013029 01460 010411 023538 040281 02854 031783 0033243 036461 025846 058434 1 070907 070804 033443 03706 060696 0.24040 041055 00077474 012024 063403 0.61091 1 039696 06027689 0012764 01981</td> <td>Universities UTP - EAFIT 12 procedure 12 procedure 12 max. 12 procedure To load data 12 max. 0 data 0 data 0 data</td>	Veneword, or provided and provided	Universitie UTP - EAFIT gle xis Import data Matrix of parameters Matrix of parameters Parameter 1 Parameter 2 Parameter 3 Parameter 5 Parameter 6 Parameter 7 0013029 01460 010411 023538 040281 02854 031783 0033243 036461 025846 058434 1 070907 070804 033443 03706 060696 0.24040 041055 00077474 012024 063403 0.61091 1 039696 06027689 0012764 01981	Universities UTP - EAFIT 12 procedure 12 procedure 12 max. 12 procedure To load data 12 max. 0 data 0 data 0 data	

Fig. 5. OPTIMUM module Source: Own elaboration

The results are display as diagrams (see Fig. 6).

SVD procedure

The SVD Module is a computational tool to make a multidimensional analysis through the linear algebra field (Cempel, 1998; Cempel, Natke, 1996b; Żółtowski, 1995). The module enables sort upwardly the observations relative to a selected symptom (see Fig. 7), this action makes vary the dimensional space due the set of symptoms is centered and normalized by the new initials' values if each symptom (see Fig. 8).

File to an	File to analysis SVD analysis To look for Ceated by: Universities UTP - EAFIT			Select the channel Gua		Guantity of samples		Sy	Symptoms list D.Estandar	
Tol								D.		
File name	L	inversities UTP -	EAFIT			Observations	to consider			
	xample.xts	Import	inte	To load data	1	6			Sort symptoms	
iow result	9									
			Motri	ix of symptoms						
State	Media	RMS(t)	RMS(f)	RMS(p)	Max	Min	DEstandar	Aad	Symptoms matrix plot	
sA	0.0699	0.07 8485	0.13589	0.011784	0.15357	0.15.248	0.07852	0.065	Symptoms matrix plot	
:8	0.0974	63 0.10954	0.18965	0.022094	0.20835	0.19709	0.10959	0.061	Gral. damage (SUM SD)	
sC .	0.208	96 0.23235	0.40281	0.092313	0.41535	0.38228	0.23246	0.156	Develment of SD1	
sD	0.178	0.20033	0.34755	0.069675	0.37407	0.357.95	0.20042	0.158	C perminent of sor	
sE	0.1	59 0.19193	0.33062	0.066582	0.38566	0.36035	0.19201	0.135		
sF.	0.183	66 0.20996	0.36457	0.067214	0.45092	0.44202	0.21005	0.162	Principal Components	
									Export to *.xl	

Fig. 7. SVD Module Source: Own elaboration

Fig. 8. Original symptom matrix and transformed symptom matrix Source: Own elaboration

The SVD Module calculates the general damage and the development of SD1 (see Fig. 9), besides represents un three dimensions the three most characteristic symptoms and their relationship (Fig. 10).

Fig. 9. Analysis of damage Source: Own elaboration

Fig. 10. Principal Components representation Source: Own elaboration

Input/Output relationship functions

This module computes the functions of high order between two signals (Bishop, Johnson, 1990; Śniedziewski, 2021). The calculated function is FFT, FRF, TF, Coherence Cross-correlation (see Fig. 11) and makes the analysis in the frequency domain. Each function can be setting to find the area under the curve, it means, to do a numerical integration in a defined limit (see Fig. 12).

Fig. 11. Input/Output Module Source: Own elaboration

Fig. 12. Setting the limits of area function Source: Own elaboration

Optimization

The optimization module (see Fig. 13) has two parts:

- interpolation,
- approximation.

File to analysis Spline analysis			nalysis	Sele	Select the channel			Select the parameter	
To look for		Ceated by:			Ob3 *				Interpolation
Universities UTP -			s UTP - EAFIT		Quantity of samples				To interpolate between data points. It finds values at intermediate points.
ization_Example.xls			Import data		10	Tok	of a one-dimensional function that underlies the data		
w results Spline interpolation									 Parametric interpolation Differential functions
State	Czas pracy	Asr	RMS(t)	RMS(f)	RMS(p)	Wmax	Wmin	*	Aproximation
L21X		4.8783	21563	3.9231	7.7008	4.9915			To find the coefficients of a
L21X	29	3.8783	2058	37594	6.0316	4.9915			polynomial f(x) of degree n
L21X	30	37783	3.5568	5.8628	6.4878	4,989			that fits the data, f(x(i)) to y(i), in a least squares sense
L21X	31	2 87 83	3.3009	5.484	6.57.68	4,9988			
L21X	414	2.87.83	3.0295	5.2717	63685	4,9988			Polynomial aproximation
L21X	54	2 3.4834	3.4078	5.7.67	6.0937	4,989			Differential functions
L21X	57	3 27 83	3 4988	5.9711	6.27.21	4.9915			
L21X	66	8 2.9924	3 2845	5.6693	7.9265	4,9968		-	Export to *.xts
<									Export data

The interpolation can be Piecewise cubic Spline or Lagrange polynomial, in each case founds the maximums and minimums absolute and locals (see Fig. 14).

Fig. 13. Optimization module Source: Own elaboration

A numerical calculus of the differential function is made, and then a numerical procedure is realized to find the roots of the differential function (Banek, 1997; Bendat, Piersol, 1996; EASA, 2022).

Fig. 14. Interpolation Spline and Lagrange Source: Own elaboration

The approximation procedure is a non-liner least squares method, it is in 2, 3, 4 and 5 or order. Each approximation has its SSE value and analytical equation (see Fig. 15).

Neural Network

Neural Network has two parts. The first part is the neuron training, whole the Neural Network learns about the function's relationship. The second one part is the simulation at the Neural Network with another data set (see Fig. 16).

File to analysis To look for	Select the input channel Input samples Arkusz1 17 17		Neural Network analysis Ceated by: Universities UTP - EAFIT	
File name bogdan02.xls Import data	Select the output channel Arkusz1	Output samples	Universities	To load data
work analysis	. ,			
etting Input & Ouput to network		ettings the tranfer functions		
Odch.st.	nput S(p)	First network layer		Mean squared
	Output	Second network layer		error 5636.2112E-3
	(max/Xp -	tansig ~		5636.2112E-3
			Trainig	Plot tainig test
	anneasth.			

Fig. 16. Neural Network module Source: Own elaboration

The training process is shown in the Fig.17.

Fig. 17. Training test of Neural Network Source: Own elaboration

MAC procedure

MAC is a versatile module. It is very useful to calculate and analysis the correlation into two vectors of matrices (see Fig. 18).

		MAC analysis		Title of the MA	VC analysis		Upper limit	
File to analysis To look for File name File name		Ceated by:		MAC enelysis	1		0.9	
				Select a data set MarioSVDX_C •		Label of data set Data set 1	Lower limit	
		- EAFIT	0.7					
Child Duranta da				Select a data set Label of data set				
CmAve_Example.sas Import data		t deta	MarioSVDX_S ·		Data set 2	1 () () () () () () () () () (Load data	
State	¥1	¥2	¥3	Y4	γ5			
	l	l		MAC Metrix				
(1	0.19							
12		0.0023349			0.0069478			
(3	0.0096				0 1 2 2 6 7			MAC metrix 2D plot
(4	0.027	209 0.073159	0.080348	0.062573	0 16822			C MAC metrix 3D plot
15	0.10	167 0.0038455	0.237.88	0.045363	0.95834			
								Export to *.xts
								Export data

Fig. 18. MAC module Source: Own elaboration

The results obtained in MAC module can be plot as illustrative diagrams (see Fig. 19).

Fig. 19. MAC diagram Source: Own elaboration

Conclusions

Operation of vehicles deals with the problems of the process of the existence of objects, from concept and design, through construction, production, and use, to liquidation and disposal after use. These problems coexist with the issues of technical suitability, reliability and safety, ecology, occupational health and social and living conditions.

Systemic treatment of the presented issues requires extensive use of research methods, especially in the field of information processes necessary to make effective operational decisions. Computer-assisted vehicle operation is already a reality, more and more often supporting their rational use supported by procedures for selecting measures for assessing the condition, safety, and environmental protection.

The intensification of problems with operation and the related needs for access and selection of process parameters for changing the technical condition, reliability, and operational readiness result from the verification nature of this stage of the life of vehicles.

The presented information procedures in obtaining and processing available measures of the state and safety of use are the basic procedures for their practical application in the built control and diagnostic systems of modern vehicles.

The technical diagnostics, which are outstanding at this stage, relates to the issues of the selection of measures of the quality of use and diagnostic service with the use of IT systems. They are the basis for the proposed quality assessment procedures for many requirements included in the control systems, most often already integrated with vehicles earlier, already at the stage of assessment, construction, and production. The proposed procedures of this study are original algorithms important in the acquisition and processing of measurement data from research, often obtained with excess, built based on available statistical methods.

BIBLIOGRAPHY

- Augustyn, S., 2022. Międzynarodowy transport szczepionki na covid-19 i problemy z nim związane. Presentation for a lecture on "Logistyka międzynarodowa". Wojskowa Akademia Techniczna, Warszawa.
- [2] Awrejcewicz, J., 1996. Drgania deterministyczne układów dyskretnych. WNT, Warszawa.
- [3] Bajkowski, J., Grzesikiewicz, W., Jusis, J., 2000. Simulation investigation of self-excited caused by friction. XIX Symposium Vibrations in Phisical Systems, Poznań-Błażejewko.
- [4] Banek, T., Batko, W., 1997. Estymacja zaburzeń w systemach monitorujących. AGH, Kraków.
- [5] Batko, W., Gołaś, M., 1998. Zastosowanie metody wyrównywania wykładniczego do eliminacji zakłóceń typu run-out w systemach monitorujących. XXV Ogólnopolskie Sympozjum Diagnostyka Maszyn, Węgierska Górka, 19-32.
- [6] Bendat, J.S., Piersol, A.G., 1996. Metody analizy i pomiaru sygnałów losowych. PWN, Warszawa.
- [7] Będkowski, L., Dąbrowski, T., 2000. Elementy syntezy systemu wspomagającego diagnostykę w procesach obsługowych. XXVII Sympozjum. Diagnostyka Maszyn, Węgierska Górka, 49-62.
- [8] Birger, I.A., 1978. Technical diagnostics. Nauka, Moscov, p. 32, in Russian.
- [9] Bruel, P., 1993. Induced hearing loss in industry. Inter Noise 93, Leuven-Belgium.
- [10] Broch, J.T., 1980. Mechanical Vibration and Shock Measurements. Bruel & Kjaer.
- [11] Bishop, R., Johnson, D.C., 1990. The mechanics of vibration. Cambridge University Press.
- [12] Cempel, C., 2000. Teoria i Inżynieria Systemów Wprowadzenie [online]. Skrypt, Politechnika Poznańska, Poznań; p.100 + Fig.100. Available at: neur.am.put.poznan.pl: Politechnika Poznańska Zakład Wibroakustyki i Bio-Dynamiki Systemów [3 April 2022].
- [13] Cempel, C., 1998. Fundamentals of Vibroacoustical Condition Monitoring. Chapter 13, 324 -253 in: Handbook of Condition Monitoring, Chapman and Hall, London, 565.
- [14] Cempel, C., Natke, H. G., 1996a. Holistic Dynamics of Systems, Journal of Systems Engineering, 6; 33–45.
- [15] Cempel, C., Natke, H. G., 1996b. The Modelling of Energy Transforming and Energy Recyclic Systems. Journal of Systems Engineering, 6, 79–88.
- [16] EASA, 2022. Transport of cargo in passenger compartment exemptions under article 71(1) of regulation (EU) 2018/1139 (the basic regulation), Issue 6.0 [online]. Available at: https://www. easa.europa.eu/en/downloads/136355/en [11 April 2022].
- [17] Giergiel, J., Uhl T., 2000. Identyfikacja układów mechanicznych. PWN, Warszawa.
- [18] Giergiel, J., 2000. Drgania mechaniczne. AGH, Kraków.
- [19] Grifin, M.J., 1990. Handbook of human vibration. Academic Press.
- [20] Natke, H. G., Cempel, C., 1997. Model Aided Diagnosis of Mechanical Systems, Springer Verlag.
- [21] Niziński, S., Żółtowski, B., 2002. Modelowanie procesów eksploatacji maszyn. MARKAR BZ, Bydgoszcz - Sulejówek.
- [22] Śniedziewski, T., 2021. Chiny: Koniec czasu preighterów [online]. Availabe at: https://www.rynek-lotniczy.pl/wiadomosci/chiny-koniec-czasu-preighterow-13316.html [20 May 2022].

- [23] Winiwarter, P., Cempel, C., 1996. From Trophic Webs and Hierarchical Energy Transformation Systems to Multilayer Neural Network. Proceedings of International Conference PPSN IV, Berlin.
- [24] Żółtowski, B., Cempel, Cz. (red.), 2004. Inżynieria diagnostyki. ITE, Radom.
- [25] Żółtowski, B., 1995. Computer testing of combustion engine using the method of acceleration. Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques. Paris-Senlis. France.
- [26] Żółtowski, B., 1997. Diagnostic identification of real objects (part I). COMADEM 97. Helsinki. Finland, 2; 224-235.
- [27] Żółtowski B., 1997. Diagnosis experiments of machines. LAMDAMAP'97, Huddersfield, UK.